题目:The distribution of squarefree integers in short intervals
主讲人:Ofir Gorodetsky (Oxford)
摘要:The squarefree integers are divisible by no square of a prime. It is well known that they have a positive density within the integers. We consider the number of squarefree integers in a random interval of size H: # {n in [x,x+H] : n squarefree}, where x is a random number between 1 and X. The variance of this quantity has been studied by R. R. Hall in 1982, obtaining asymptotics in the range H < X^{2/9}, with a proof method that stays in 'physical space'. Keating and Rudnick recently conjectured that his result persists for the entire range H < X^{1-epsilon}. We make progress on this conjecture, with properties of Dirichlet polynomials playing a role in our results. We will show how one can verify the conjecture for H slightly beyond X^{1/2}. This is joint work with Kaisa Matomäki, Maks Radziwill and Brad Rodgers.
时间:2020年11月03日,14:00-15:00
地点:腾讯会议,会议 ID:995 338 269