当前位置: 首页 > 科研学术 > 科研成果 > 正文

山东系统与计算法学研究中心——(王芳,张蓝天,郭雷)非线性递推辨识理论在量刑数据分析中的应用

【 发布日期:2024-07-03 】

司法大数据已成为法律实证研究和智慧司法工程建设的重要基础,相应地,数据计算结果的可解释性与可靠性等基础性问题愈加重要。为此,本研究对非线性递推辨识理论进行了相应创新,并应用于量刑数据分析。具体来讲,依据相关法律建立了更加符合法逻辑的非线性随机量刑模型(S-模型),应用本研究提出的非线性递推辨识算法和建立的关于有限数据样本下辨识精度的数学理论,对近20万故意伤害罪判决数据进行了计算分析。研究发现,与传统线性模型及最小二乘算法相比,基于本研究的S模型和非线性递推辨识算法所给出的计算结果,更符合量刑基本原则和具体规则,可以更准确地反映量刑要素的影响及变化,并具有更好的预测能力。

本项研究由山东大学数据科学研究王芳教授、中国科学院数学与系统科学研究院张蓝天博士生、郭雷院士共同合作完成。相关论文见:王芳,张蓝天,郭雷.非线性递推辨识理论在量刑数据分析中的应用[J].中国科学:信息科学,2022,52(10):1837-1852.